A joint latent class model for classifying severely hemorrhaging trauma patients
نویسندگان
چکیده
منابع مشابه
Matching patients to an intervention for back pain: classifying patients using a latent class approach
RATIONALE, AIMS AND OBJECTIVES Classification of patients with back pain in order to inform treatments is a long-standing aim in medicine. We used latent class analysis (LCA) to classify patients with low back pain and investigate whether different classes responded differently to a cognitive behavioural intervention. The objective was to provide additional guidance on the use of cognitive beha...
متن کاملClassifying Severely Imbalanced Data
Learning from data with severe class imbalance is difficult. Established solutions include: under-sampling, adjusting classification threshold, and using an ensemble. We examine the performance of combining these solutions to balance the sensitivity and specificity for binary classifications, and to reduce the MSE score for probability estimation.
متن کاملA latent class selection model for nonignorably missing data
A Latent-Class Selection Model for Nonignorably Missing Data Most missing-data procedures assume that the missing values are ignorably missing or missing at random (MAR), which means that the probabilities of response do not depend on unseen quantities. Although this assumption is convenient, it is sometimes questionable. For example, questionnaire items pertaining to sensitive information (e.g...
متن کاملA penalized latent class model for ordinal data.
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent clas...
متن کاملA latent-class mixture model for incomplete longitudinal Gaussian data.
In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in pract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Research Notes
سال: 2015
ISSN: 1756-0500
DOI: 10.1186/s13104-015-1563-4